Extensions 1→N→G→Q→1 with N=C22 and Q=D42

Direct product G=NxQ with N=C22 and Q=D42
dρLabelID
C23xD21168C2^3xD21336,227

Semidirect products G=N:Q with N=C22 and Q=D42
extensionφ:Q→Aut NdρLabelID
C22:D42 = C2xC7:S4φ: D42/C14S3 ⊆ Aut C22426+C2^2:D42336,215
C22:2D42 = D4xD21φ: D42/D21C2 ⊆ Aut C22844+C2^2:2D42336,198
C22:3D42 = C2xC21:7D4φ: D42/C42C2 ⊆ Aut C22168C2^2:3D42336,203

Non-split extensions G=N.Q with N=C22 and Q=D42
extensionφ:Q→Aut NdρLabelID
C22.1D42 = D4:2D21φ: D42/D21C2 ⊆ Aut C221684-C2^2.1D42336,199
C22.2D42 = D84:11C2φ: D42/C42C2 ⊆ Aut C221682C2^2.2D42336,197
C22.3D42 = C4xDic21central extension (φ=1)336C2^2.3D42336,97
C22.4D42 = C42.4Q8central extension (φ=1)336C2^2.4D42336,98
C22.5D42 = C84:C4central extension (φ=1)336C2^2.5D42336,99
C22.6D42 = C2.D84central extension (φ=1)168C2^2.6D42336,100
C22.7D42 = C42.38D4central extension (φ=1)168C2^2.7D42336,105
C22.8D42 = C2xDic42central extension (φ=1)336C2^2.8D42336,194
C22.9D42 = C2xC4xD21central extension (φ=1)168C2^2.9D42336,195
C22.10D42 = C2xD84central extension (φ=1)168C2^2.10D42336,196
C22.11D42 = C22xDic21central extension (φ=1)336C2^2.11D42336,202

׿
x
:
Z
F
o
wr
Q
<